Weighted Interval Scheduling

January 30, 2026

[1]: import random

def random_request():
return [sorted(random.sample(range(100),2)), random.random()*10]

[6]: R = random_request()
print (R)
print (R[0])
print(R[1])

[[27, 33], 4.259970557121243]
[27, 33]
4.259970557121243

[6]: def make_requests(n):
return [random_request() for i in range(n)]

[7]: make_requests(3)

[71: [[[14, 63], 3.813388978956583],
[[40, 43], 8.626891962979318],
[[10, 76], 0.44221148299870894]]

[8]: def compatible(rl, r2):
return r2[0][1] <= r1[0] [0] or r2[0][0] >= ri1[0][1]

def is_compatible(request, solution):
return all(compatible(request, r) for r in solution)

[9]: def plot_requests(requests):
for r in sorted(requests, key=lambda x : x[0][1]):
print (" "x(r[0][0]) + "-"x(r[O][1]-r[0][0]) + " (" +,
wstr(round(r[1],2)) + "))
#print ("total value:",sum(r[1] for r in requests))
total_value = sum(r[1] for r in requests)
print(f"total value: {total_valuel}")

[10]: R

[10]: [[27, 33], 4.259970557121243]

[11]: # best = most wvaluable
def greedy(requests):
sorted_requests = sorted(requests, key=lambda r: r[1], reverse=True)
also could have done
sorted_requests = sorted(requests, key=lambda r: -r[1])
solution = []
solution.append(sorted_requests.pop(0))

while len(sorted_requests) > O:
request = sorted_requests.pop(0)
if is_compatible(request, solution):
solution.append(request)
return solution

[12]: requests = make_requests(100)

[13]: plot_requests(requests)

________ (2.53)
----- (1.0)
______________ (9.29)
-— (4.52)
_________________ (5.77)
_________ (9.54)
________________ (1.34)
- (3.19)
________________ (5.69)
________________ (3.18)
-—== (6.7)
_________________________ (8.45)
__________________________ (3.86)
_________ (4.76)
____________________________________ (1.76)
___________________________________ (0.86)
______________ (8.81)
_________________ (0.51)
_________________ (7.69)
__________________________________ (0.58)
______________________________________ (5.14)
___________________ (8.3)
____________ (7.39)
______________________________ (8.47)
__________________ (6.48)
________ (1.6)

- (10.0)
-------- (1.25)
-------------- (4.12)
-------------- (3.58)
e (5.4)
___: --------------- (5.5)
- (9.59)
e (7.89)
S (5.9)
e (1.96)
__ (0.15)
--------------- (1.71)
e (2.39)
-------------- (7.28)
--------------- (2.77)
__ (7.28)
___ (9.49)
__ (2.79)
__________________________________ (7.72)
S (8.71)
--------------- (6.49)
----------- (0.15)
__ (0.36)
@
Gesy
@3
T
Gy
9y
Ge
Goes
sy
(5.34) _
G
ey T

(7.49)

(9.36)
@
68y
ey T
e (8.46)
ey T
@8
wss
08y
S (4.19)
---------- (2.44)
------ (9.75)
IZ:IZ:::j‘-------——————-—-—---_-__IIIIZZI:: ------------- (1.86)
___ (5.38)
__________________________________ (3.33)
__________________________________ (1.94)
-------- (2.62) T
-------- (4.06) e
------- (9.81) B C S L
T e T 3.2
;;;:—---———————-—-----_____IZiIIiZZ::::: ---------- (7.59)
T @ (4.72)
__________________: -------- (8.75)
e T
R 2.9
T G T
T .19
T T
____________________ L ——----—- (9.92)

[14]:

[15]:

[16]:

[16]:

[17]:

[17]:

[]1:

[18]:

total value: 512.0885879560853

sol = greedy(requests)
print(sol)
print(len(sol))

[[[49, 50], 9.999411125110324], [[55, 971, 9.92176595875139], [[13, 22],
9.53960402648078], [[26, 40], 8.806833726549026], [[23, 24], 3.189200897465505],
[[5, 13], 2.5295233838369358]]

6

plot_requests(sol)

total value: 43.98633911819396

sol

[[[49, 50], 9.999411125110324],
[[55, 971, 9.92176595875139],
[[13, 22], 9.53960402648078],
[[26, 40], 8.806833726549026],
[[23, 24], 3.189200897465505],
[[5, 13], 2.5295233838369358]]

sum(s[1] for s in sol)
43.98633911819396
best = most waluable

best shortest
best = most value-dense (highest value/duration)

def greedy(requests, sort_function):
sorted_requests = sorted(requests, key=sort_function)
solution = []
solution.append(sorted_requests.pop(0))

while len(sorted_requests) > O:
request = sorted_requests.pop(0)
if is_compatible(request, solution):

solution.append(request)
return solution

L1]:
[19]: | # request = [[start, end], wvaluel

most_value = lambda req : -reql[l]

shortest = lambda req : reql0] [1] - req[0][0]

density = lambda req : -req[1]/(req[0][1] - req[0][0])
L1]:

[25]: requests = make_requests(1000)

[26]: sl = greedy(requests, most_value)
s2 = greedy(requests, shortest)
s3 = greedy(requests, density)

[27]: plot_requests(sl)

-—- (7.87)
------- (6.76)
—————————————————————————— (9.99)
- (5.76)
——————————————— (9.97)
------ (9.67)
-- (9.83)
- (8.92)
total value: 78.54253900972864
[28]: plot_requests(s2)
- (4.5)
-- (1.91)
--— (4.17)
-- (0.46)
- (3.64)
-- (6.98)
- (2.0)
—————— (1.64)
-- (3.3)
- (9.16)
-—- 4.0
-- (7.66)
-—— (4.38)
- (5.76)

-- (1.23)
- (4.46)
- (0.33)
- (8.68)
--- (6.21)
- (8.87)
- (9.06)
-- (2.86)
-- (1.35)
(4.21)
(0.98)
(2.91)
(6.47)
-- (9.36)
-—-- (0.67)
--- (5.9)
-- (6.86)
-- (5.81)
- (8.92)
total value: 160.50441654524232
[29]: plot_requests(s3)
- (4.5)
--- (1.03)
-- (2.0
------ (9.06)
- (3.64)
-- (6.98)
---- (9.88)
-- (38.3)
- (9.16)
- (4.1
-- (7.66)
-—— (4.38)
(5.76)
- (56.71)
--- (8.56)
- (4.46)
- (0.33)
- (8.68)
--- (6.21)
- (8.87)

[]1:

[30]:

[1:

[1:

(4.21)
(0.98)
(2.91)
(6.47)
-- (9.36)
---- (2.88)
-—- (5.9)
-—- (6.86)
-- (9.83)
- (8.92)

total value: 191.78616631663735

requests = make_requests(100_000)
sl = greedy(requests, most_value)
s2 = greedy(requests, shortest)
s3 = greedy(requests, density)
def score(sol):
return sum(s[1] for s in sol)
print([score(sl), score(s2), score(s3)])

[242.86556697353143, 471.9048622334046, 932.721185235033]

