
Weighted Interval Scheduling

January 30, 2026

[1]: import random

def random_request():
return [sorted(random.sample(range(100),2)), random.random()*10]

[5]: R = random_request()
print(R)
print(R[0])
print(R[1])

[[27, 33], 4.259970557121243]
[27, 33]
4.259970557121243

[6]: def make_requests(n):
return [random_request() for i in range(n)]

[7]: make_requests(3)

[7]: [[[14, 63], 3.813388978956583],
[[40, 43], 8.626891962979318],
[[10, 76], 0.44221148299870894]]

[8]: def compatible(r1, r2):
return r2[0][1] <= r1[0][0] or r2[0][0] >= r1[0][1]

def is_compatible(request, solution):
return all(compatible(request, r) for r in solution)

[9]: def plot_requests(requests):
for r in sorted(requests, key=lambda x : x[0][1]):

print(" "*(r[0][0]) + "-"*(r[0][1]-r[0][0]) + " (" +␣
↪str(round(r[1],2)) + ")")

#print("total value:",sum(r[1] for r in requests))
total_value = sum(r[1] for r in requests)
print(f"total value: {total_value}")

[10]: R

1

[10]: [[27, 33], 4.259970557121243]

[11]: # best = most valuable
def greedy(requests):

sorted_requests = sorted(requests, key=lambda r: r[1], reverse=True)
also could have done
sorted_requests = sorted(requests, key=lambda r: -r[1])
solution = []
solution.append(sorted_requests.pop(0))

while len(sorted_requests) > 0:
request = sorted_requests.pop(0)
if is_compatible(request, solution):

solution.append(request)

return solution

[12]: requests = make_requests(100)

[13]: plot_requests(requests)

-------- (2.53)
----- (1.0)

-------------- (9.29)
-- (4.52)

----------------- (5.77)
--------- (9.54)

---------------- (1.34)
- (3.19)

---------------- (5.69)
---------------- (3.18)

---- (6.7)
------------------------- (8.45)

-------------------------- (3.86)
--------- (4.76)

------------------------------------ (1.76)
----------------------------------- (0.86)

-------------- (8.81)
----------------- (0.51)
----------------- (7.69)

---------------------------------- (0.58)
-------------------------------------- (5.14)

------------------- (8.3)
------------ (7.39)

------------------------------ (8.47)
------------------ (6.48)

-------- (1.6)
------------ (6.2)

2

---------------------------------- (0.74)
- (10.0)

-------- (1.25)
------------------- (4.12)

--------- (3.58)
------------------------- (5.4)

----------------------- (5.5)
------------------------- (9.59)

--- (7.89)
--------------------------- (5.9)

-- (1.96)
-- (0.15)

-- (1.71)
-------------------- (2.39)

-- (7.28)
-------------------- (2.77)

------------- (7.28)
--- (9.49)

--- (2.79)
--- (7.72)

--- (8.71)
----------------------------------- (6.49)

-------------- (0.15)
------------------ (0.36)

--
(4.42)

--
(5.66)

(8.31)

(7.16)

(3.3)

(3.99)

(3.9)

(5.65)

(5.45)

-
(5.34)

(5.73)

(7.29)

3

(7.49)

(9.36)

(8.23)

--
(6.61)

(1.49)
---------------------------------- (8.46)
--
(8.36)
--
(8.63)
--
(4.36)
--
(0.83)
---------------------------- (4.19)
-------------------- (2.44)
------- (9.75)
-- (1.86)
--- (5.38)
--- (3.33)
--- (1.94)

-------- (2.62)
--
-------- (4.06)
--- (8.87)

----- (9.81)
-- (3.2)
-------------------------- (1.6)
-- (7.59)
-- (4.72)
----------------- (8.41)
------------------------------ (8.75)
--
(7.18)
------------------------------- (2.93)

----------------- (3.61)
------------------------------------ (5.19)

----------------- (4.72)
-- (9.92)
-------------------- (1.37)

4

-- (3.33)
--------------------------- (3.37)
-- (5.13)
total value: 512.0885879560853

[14]: sol = greedy(requests)
print(sol)
print(len(sol))

[[[49, 50], 9.999411125110324], [[55, 97], 9.92176595875139], [[13, 22],
9.53960402648078], [[26, 40], 8.806833726549026], [[23, 24], 3.189200897465505],
[[5, 13], 2.5295233838369358]]
6

[15]: plot_requests(sol)

-------- (2.53)
--------- (9.54)

- (3.19)
-------------- (8.81)

- (10.0)
-- (9.92)
total value: 43.98633911819396

[16]: sol

[16]: [[[49, 50], 9.999411125110324],
[[55, 97], 9.92176595875139],
[[13, 22], 9.53960402648078],
[[26, 40], 8.806833726549026],
[[23, 24], 3.189200897465505],
[[5, 13], 2.5295233838369358]]

[17]: sum(s[1] for s in sol)

[17]: 43.98633911819396

[]: # best = most valuable
best = shortest
best = most value-dense (highest value/duration)

[18]: def greedy(requests, sort_function):
sorted_requests = sorted(requests, key=sort_function)
solution = []
solution.append(sorted_requests.pop(0))

while len(sorted_requests) > 0:
request = sorted_requests.pop(0)
if is_compatible(request, solution):

5

solution.append(request)

return solution

[]:

[19]: # request = [[start, end], value]
most_value = lambda req : -req[1]
shortest = lambda req : req[0][1] - req[0][0]
density = lambda req : -req[1]/(req[0][1] - req[0][0])

[]:

[25]: requests = make_requests(1000)

[26]: s1 = greedy(requests, most_value)
s2 = greedy(requests, shortest)
s3 = greedy(requests, density)

[27]: plot_requests(s1)

--- (7.87)
------- (6.76)

-------------------------- (9.99)
- (5.76)
-------------------------------- (9.77)

--------------- (9.97)
------ (9.67)

-- (9.83)
- (8.92)

total value: 78.54253900972864

[28]: plot_requests(s2)

- (4.5)
-- (1.91)

--- (4.17)
-- (0.46)

- (3.64)
-- (6.98)

- (2.0)
------ (1.64)

-- (3.3)
- (9.16)
-- (4.1)

-- (7.66)
--- (4.38)

- (5.76)

6

- (5.71)
-- (1.23)
- (4.46)

- (0.33)
- (8.68)

--- (6.21)
- (8.87)
- (9.06)

-- (2.86)
-- (1.35)

--
(4.21)

-
(0.98)

-
(2.91)

-
(6.47)
-- (9.36)

--- (0.67)
--- (5.9)

-- (6.86)
-- (5.81)

- (8.92)
total value: 160.50441654524232

[29]: plot_requests(s3)

- (4.5)
--- (1.03)

-- (2.0)
------ (9.06)

- (3.64)
-- (6.98)

---- (9.88)
-- (3.3)

- (9.16)
-- (4.1)

-- (7.66)
--- (4.38)

- (5.76)
- (5.71)

--- (8.56)
- (4.46)

- (0.33)
- (8.68)

--- (6.21)
- (8.87)

7

- (9.06)
--- (1.99)

--- (6.8)
-- (1.35)

--
(4.21)

-
(0.98)

-
(2.91)

-
(6.47)
-- (9.36)

---- (2.88)
--- (5.9)

-- (6.86)
-- (9.83)

- (8.92)
total value: 191.78616631663735

[]:

[30]: requests = make_requests(100_000)
s1 = greedy(requests, most_value)
s2 = greedy(requests, shortest)
s3 = greedy(requests, density)
def score(sol):

return sum(s[1] for s in sol)
print([score(s1), score(s2), score(s3)])

[242.86556697353143, 471.9048622334046, 932.721185235033]

[]:

[]:

8

